x^2=23/49

Simple and best practice solution for x^2=23/49 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2=23/49 equation:



x^2=23/49
We move all terms to the left:
x^2-(23/49)=0
We add all the numbers together, and all the variables
x^2-(+23/49)=0
We get rid of parentheses
x^2-23/49=0
We multiply all the terms by the denominator
x^2*49-23=0
Wy multiply elements
49x^2-23=0
a = 49; b = 0; c = -23;
Δ = b2-4ac
Δ = 02-4·49·(-23)
Δ = 4508
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4508}=\sqrt{196*23}=\sqrt{196}*\sqrt{23}=14\sqrt{23}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{23}}{2*49}=\frac{0-14\sqrt{23}}{98} =-\frac{14\sqrt{23}}{98} =-\frac{\sqrt{23}}{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{23}}{2*49}=\frac{0+14\sqrt{23}}{98} =\frac{14\sqrt{23}}{98} =\frac{\sqrt{23}}{7} $

See similar equations:

| -9b-4=-139 | | x2=4936​ | | -320+z=400 | | 5x-20=7x+10 | | 7t−6(t−2)=0 | | 3x+1+4x-3-6x=11 | | 7d-2=33 | | 2x+7-x+5=10 | | ?x600=7,200 | | g-15=-14 | | 3z-2(z+4)=16-3(2z+1)-z+2 | | -10×+2y=-32 | | p+100=-200 | | g-33=-1 | | -(3x-7)+2x+5=2x-3(4x+2)-10 | | g-13=-2 | | 19/35=x/1 | | 51=-4-5w | | 10-(3t+2)=20+5t-6 | | 3(y-4)-5(y+7)=2-y | | 3(y-4)-5(5y+7)=2-y | | 60w-220=860 | | -17x-8=24 | | 4x+15=101 | | y=8×-4 | | –1.91=u−16.74–1 | | 7(2x-1)-3(x+3)=2(3x-1)+6 | | 1/2+1.5x+10=15 | | 6(2x-1)-3(x+3)=2(3x-1)+6 | | 15•f=-75 | | 5.5x=26 | | 4/p+1+1/p^2-5p-6=1/p-6 |

Equations solver categories